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Abstract. In recent years, estimating the power output of in-
herently intermittent and potentially distributed renewable energy
sources has become a major scientific and societal concern. In this
paper, we provide an algorithmic framework, along with an inter-
active web-based tool, to enable short-to-middle term forecasts of
photovoltaic (PV) systems and wind generators output. Importantly,
we propose a generic PV output estimation method, the backbone
of which is a solar irradiance approximation model that incorpo-
rates free-to-use, readily available meteorological data coming from
online weather stations. The model utilizes non-linear approxima-
tion components for turning cloud-coverage into radiation forecasts,
such as an MLP neural network with one hidden layer. We present a
thorough evaluation of the proposed techniques, and show that they
can be successfully employed within a broad geographical region
(the Mediterranean belt) and come with specific performance guar-
antees. Crucially, our methods do not rely on complex and expensive
weather models and data, and our web-based tool can be of immedi-
ate use to the community as a simulation data acquisition platform.

1 Introduction
In recent decades, with fossil fuel resources running out and environ-
mental concerns regarding their use growing, the generation of power
from renewable energy sources has been hailed as the way forward to
an energy-sufficient future. Renewable energy sources, however, are
inherently intermittent, as their power output depends on a variety of
factors. This fact has lead research in engineering to develop numer-
ous methods for estimating the power output of renewable energy
generators. More recently, AI and multiagent systems research has
been increasingly preoccupying itself with building intelligent sys-
tems for the Smart Grid [23]—and the efficient incorporation of re-
newable energy generators into the Smart Grid has emerged as a ma-
jor challenge [16, 18]. The creation of Virtual Power Plants (VPPs),
in particular, bringing together large numbers of heterogeneous Dis-
tributed Energy Resources (DERs) to create the impression of a sin-
gle “conventional” power plant, has been suggested as a way to over-
come the unpredictability of renewable energy generation [3, 17].

Now, forecasting PV systems output can, in many cases, be linked
to the task of forecasting solar irradiance (or radiation) estimates.
Though several such approximation methods have been proposed in
the literature, they typically suffer from several drawbacks: (a) they
rely on expensive meteorological forecasts; (b) they usually do not
come with strict approximation performance guarantees; this is be-
cause (c) they are made up of components that have been evaluated
only in isolation; or (d) their performance has been evaluated only in
a narrow geographic region. Moreover, many such methods produce

1 Electronic and Computer Engineering, Technical University of Crete,
Greece; emails: {apanagopoulos, gchalkiadakis, ekoutroulis}@isc.tuc.gr

clear sky prediction models only. However, the evaluation of predic-
tion methods in a wide region is important for the day-to-day opera-
tion of VPPs with regionally-distributed DER members, as they need
to make decisions as to which members to employ for their daily pro-
duction needs; in addition, it can be of value to VPPs or enterprises
that need to plan where to recruit members from, or where to build
renewable energy facilities; and, last but not least, to national or re-
gional Grid operators, who need forecasts of solar and wind power
to properly predict and balance supply with demand.

Against this background, in this paper we provide algorithmic
tools to produce power output estimates coming from potentially dis-
tributed renewable energy resources (such as solar and wind gener-
ators). In a nutshell, we propose a generic method to come up with
PV output estimates, the backbone of which is a solar irradiance ap-
proximation model that takes cloud coverage into account, makes use
of free-to-use and readily available meteorological data, and comes
with specific performance guarantees for a wide region of interest.
Our solar irradiance model is built with components chosen after
being carefully evaluated against each other in a broad geographic
region—the Mediterranean belt (Med-Belt for short). The compo-
nents in question are non-linear approximation methods for turning
cloud-coverage into radiation forecasts, such as an MLP neural net-
work with one hidden layer. Importantly, our tools use online data
that can be downloaded for free from weather forecasting websites,
and do not rely on complex and expensive weather models and data.
By so doing, this paper is the first to present a generic but low-
cost power output estimation method which is applicable within a
wide geographical region. Our work also demonstrates how standard
machine learning methods, like least-squares fitting and neural net-
works, can be effectively applied to predict the power output of solar
plants in a wide region. Note that it is the use of “intermediate steps”,
such as using a solar irradiance model, that allows our method to be
applicable outside narrow regions—as would be the case if we just
trained a neural network over specific plants’ production output data.

In more detail, our main contributions are as follows. (a) We pro-
pose novel non-linear approximation methods to estimate solar radi-
ation falling on a surface given cloud coverage information, and eval-
uate them based on real data coming from across the whole Mediter-
ranean belt. Moreover, we test the performance of those methods at
specific locations within and outside that region. Our results suggest
that one such method, an MLP neural network, significantly outper-
forms all others. (b) Our methods only require weather data that are
readily available to all for free via weather websites. (c) We combine
our solar irradiance model with existing models calculating various
PV systems losses, and come up with a generic PV power output es-
timation model. (d) We estimate, via an error propagation procedure,
the total error of our method for the Med-Belt. (e) By so doing, this
paper is the first to provide low-cost power prediction estimates via



a method applied to a wide region, via incorporating solar irradiance
forecasts in the process. (f) We implemented a web-based, interac-
tive DER power output estimation tool, RENES, that incorporates
our PV power output estimation method, and also wind turbine out-
put estimates, for any location in Europe. Our tool enables the user
to enter equipment specifications, and derive power output estimates
based on weather forecasts for the days of interest. (g) Our method
and tool can be extended to incorporate any other “intermediate-step”
techniques deemed appropriate for particular sub-regions (e.g., tech-
niques that prove to perform better within a sub-region of interest).
(h) Finally, our work provides the scientific community with a conve-
nient user-interactive tool for simulations and experiments; this tool
could also be of use, in the long term, to the operation of VPPs com-
peting in the power market.

The rest of the paper is structured as follows: We begin in Sec. 2
with a brief review of related work. Then, we present our PV output
estimation procedure—including an all sky solar irradiance estima-
tion model incorporating cloud coverage information—in Section 3.
In Section 4 we evaluate our methods for turning cloud-coverage-to-
radiation, and select two of them for incorporation into our generic
method and web-based tool. There, we also present the overall error
of the complete PV output estimation procedure. Section 5 briefly
outlines our work on providing wind turbine power output estimates,
and the rest of the RENES functionality. Finally, Section 6 concludes.

2 Related Work

Here we provide a brief review of the work most relevant to ours. To
begin, neural networks and time-series models have been extensively
used to provide PV systems output forecasts without taking the inter-
mediate step of estimating solar radiation (e.g., [13, 22]). However,
such methods are restricted to providing predictions for a specific PV
system, or systems within a small region (as they have to be trained
on data related to the particular system in question). Moreover, time-
series models require access to online statistical performance data.

On the other hand, several cloud-cover radiation (CRM) models
relating solar radiation with degrees of cloud coverage and clear sky
radiation estimation methods have appeared in the literature over
time (e.g., [7, 15]). These models are quite generic, but have not been
thoroughly evaluated against each other, for the most part. Neverthe-
less, they can incorporate simple cloud coverage data as the ones
provided by free weather websites, and therefore can potentially be
utilized for the acquisition of short-to-medium term (24 to 48 hours)
forecasting in a wide region. We thus incorporate such models in
our method. By contrast, very short term (up to 6 hours) forecast-
ing methods, or global numerical weather prediction (NWP) models,
which are based on analyzing hard to obtain satellite images or com-
plex raw meteorological data are inappropriate for our work here.

As stated, this paper is the first to provide a regionally-applied,
low-cost power prediction estimation method, incorporating solar ir-
radiance forecasts in the process. The only other work we are aware
of that uses irradiance forecasts to produce regional renewable en-
ergy output estimates, is that of [2, 10], which is nevertheless based
on detailed forecasts from the European Centre for Medium-Range
Weather Forecasts (ECMWF), that are in general provided to mem-
ber state organizations only, or under a fee.

Finally, we note that web-tools for PV power output estimates have
begun to appear in commercial websites2. However, they do not come
with an appropriate documentation of the forecasting method used.

2 See, for instance, http://www.wunderground.com/calculators/solar.html

3 A PV Output Estimation Model
The method for predicting the energy output of PV systems presented
in this paper consists of a series of relatively independent estimation
steps that include: (a) developing a solar irradiance model to predict
the incident radiation, GT , on the PV module; (b) estimating the
amount of incident radiation actually absorbed by the PV module,
Geff ; (c) predicting the module’s operating temperature, Tc; (d) cal-
culating the PV module’s maximum power output, Pm; and, finally,
(e) predicting the PV system’s actual power output, Peff. We now
describe the aforementioned steps in detail, in a “bottom-up” order.

3.1 A solar irradiance prediction model
There is a variety of clear sky models that have been developed for
the calculation of solar radiation in optimum weather conditions (see,
e.g., [8, 11]). Based on these, numerous models have been developed
for the calculation of solar radiation under cloudy conditions as well
(e.g., [7, 15]). As mentioned above, however, in general such models
are evaluated in a specific region only, they use monthly-averaged
rather than the more finely grained hour-by-hour data, and depend
on hard to find meteorological information.

Our prediction model utilizes a number of formulas reported in
the clear sky models literature, extending them to include two cloud
transmittance coefficients, τcb and τcd , which need to be estimated
in order to derive the solar radiation levels under different cloud cov-
erage conditions. Intuitively, these coefficients describe the “quan-
tity” of beam and diffuse radiation allowed through certain degrees of
cloudiness. Our framework articulates a clear step-by-step method-
ology for estimating the relevant cloud transmittance coefficients.

An All-Sky Solar Radiation Model. The total incident radiation
on an arbitrarily oriented (earth/terrestrial) surface,Garb

T (N), given
a cloud coverage levelN , is calculated with the following procedure:

In general, Garb
T (N) consists of the beam Garb

B (N), sky-diffuse
Garb

D (N) and ground-reflected Garb
R (N) components [11]:

Garb
T (N) = Garb

B (N) +Garb
D (N) +Garb

R (N) (1)

Garb
B (N) is calculated from equation 2.

Garb
B (N) = Gonτbτcbcosθs (2)

where θs is the angle between the normal to the surface and the di-
rection to the sun; τcb is the cloud transmittance coefficient for beam
solar radiation; τb is the clear sky atmospheric transmittance coeffi-
cient for beam solar radiation; and Gon, or extraterrestrial radiation,
is the incident radiation on a surface located immediately outside
the earth atmosphere and oriented normally to the direction of the
incoming solar radiation. Gon . With its intra-day variations being
considered negligible, day-to-day Gon is given by:

Gon = Gsc

(
D0

D

)2

(3)

where Gsc is the average solar radiation at a distance of 1 AU3 from
the sun. This solar constant is valued at 1360.8 ± 0.5W/m2 based
on recent estimations. D0 is the yearly mean Earth-Sun distance (1
AU), andD the Earth-Sun distance in a given day. Then,Garb

D (N) is
given by Eq. 4, which assumes that every point of the celestial sphere
emits light with equal radiance [11].

3 Astronomical Unit = 149,597,870.7 km (92,955,807.3 mi)



Garb
D (N) = Goncosθzτdτcd

1 + cosβ

2
(4)

where θz is the solar zenith angle, τcd is the cloud transmittance
coefficient for diffuse solar radiation, τd is the clear sky atmospheric
transmittance coefficient for diffuse solar radiation, and β is the in-
clination angle of the surface.

The third component, Garb
R (N), is calculated by Eq. 5, which as-

sumes that the ground is horizontal, of infinite extent, and reflects
uniformly to all directions [11].

Garb
R (N) = ρGhor

T (N)
1− cosβ

2
(5)

whereGhor
T (N) stands for the total incident radiation on a horizontal

surface, and ρ is the average reflectance of the ground.
Now, note that, when considering Garb

R (N) on a horizontal sur-
face, β = 0 and thus Ghor

R (N) = 0. As a consequence, the total
incident radiation on a horizontal surface, Ghor

T (N), is:

Ghor
T (N) = Ghor

B (N) +Ghor
D (N) (6)

The clear sky atmospheric transmittance coefficient for beam so-
lar radiation (τb) is estimated in accordance with standard proce-
dures [6]. Subsequently, τd is approximated as τd = 0.271−0.294τb.
The θz and θs angles are estimated through known methods [19].

Estimating the Cloud Transmittances. Given the model above,
it is clear that, what is missing in order to calculateGarb

T (N), is esti-
mating the values of the cloud transmittance coefficients τcb and τcd .
These coefficients depend on the level of cloud coverage, but, intu-
itively, have a value of 1 under clear sky conditions (where all light
is allowed to go through). Hence, one can easily see that Equations 2
and 4 can be expressed for a horizontal surface as

Ghor
B (N) = Ghor

B (0)τcb (7)

Ghor
D (N) = Ghor

D (0)τcd (8)

(since, for instance, Ghor
B (0) = Gonτb1cosθs).

Solving Eq. 7 and 8 for τcb and τcd would allow for the calculation
of the beam and diffuse cloud transmittance coefficients for any level
of cloud coverage, via Eq. 2 and 4. Now, Ghor

B (0) and Ghor
D (0) can

be estimated via Eq. 2 and 4 by assuming a horizontal orientation
instead of an arbitrary one, and replacing the cloud transmittance
coefficients with the value of 1. Unfortunately, there is no direct way
to calculate Ghor

B (N) and Ghor
D (N); and, moreover, measurements

of those quantities are non-existent or very hard to obtain.
To overcome this difficulty, and since Ghor

T (N) (i.e., horizontal-
surface radiation under a given degree of cloud coverage) measure-
ments are relatively commonplace, we (i) develop a cloud-cover ra-
diation (CRM) model to predict estimates of the total Ghor

T (N) irra-
diance on a horizontal surface, given relevant past measurements un-
der cloud coverage degree N . Our CRM model can employ several
approximation algorithms, such as using the least squares method
to fit various non-linear models we introduce to approximate the
Ghor

T (N)/Ghor
T (0) ratio, or using an MLP neural network, as we

detail below. Note that such regression and function approximation
techniques have long been applied in the field of machine-learning
and AI. Then, we (ii) decompose the estimated Ghor

T (N) back to
Ghor

B (N) andGhor
D (N). For this step, we employ a readily available

diffuse ratio model developed specially for our region of interest [4].
We now detail our approaches to completing step (i) above.

Non-linear equation models. Here we describe the non-linear
models we test-evaluated, with the purpose of adopting one
for our CRM model. These models attempt to approximate the
Ghor

T (N)/Ghor
T (0) ratio, which is known to be independent of the

season and solar elevation [7]. (Note that Ghor
T (0) quantities can be

easily calculated by our all-sky radiation model, via Equation 6 and
after estimating the Ghor

B (0) and Ghor
D (0) quantities.) We eventu-

ally derived the parameters of our models via the well-known least-
squares fitting technique.

The first of our models, is based on a commonly used formula
put forth by Kasten & Czeplak [7] witch was originally based on 10
years of measurements from Hamburg, Germany. To relateGhor

T (N)
with Ghor

T (0) and cloud coverage N , they propose a parameterized
formula of the form:Ghor

T (N)/Ghor
T (0) = 1+B0,0(N/8)

B0,1 . The
1/8 in the model comes from the fact that the “sky condition” quali-
tative attribute is reported by weather forecasting agencies as a sim-
ple cloud coverage estimate (usually considering five levels of cloud
coverage), and then takes a quantitative expression in “eighths”. Ta-
ble 1 summarizes the various observable sky conditions along with
their corresponding quantitative expression.

Table 1. Sky Conditions (table provided in [24])

Reported Meaning Summation Amount
Sky Condition of Layer ( X / 8)

SKC or CLR Clear 0
FEW Few 1/8 - 2/8
SCT Scattered 3/8 - 4/8
BKN Broken 5/8 - 7/8
OVC Overcast 8/8

To better approximate the Med-Belt regional characteristics, our
first model uses their proposal after equipping it with an additional
regression (correction) coefficient:

Ghor
T (N)/Ghor

T (0) = 1 +B0,0(N/8)
B0,1 +B0,2 (9)

We then use least-squares fitting to estimate the B parameters. Note
that, though well-known, this model is evaluated in the Mediter-
ranean region for the first time in our work here.

We also developed three additional non-linear models. The first of
them is a fourth-degree polynomial, described in Equation 10 below;
intuitively, a polynomial of degree 4 is expected to best-fit data with 5
levels of cloud coverage, which is the number of cloud coverage lev-
els normally found in the online data provided by weather websites
(see Table 1). The second method proposed is a third-degree poly-
nomial, described in Equation 11; we chose to evaluate this method
in order to test the hypothesis that a polynomial of degree 3 would
be able to fit data with 5 levels of cloud coverage quite well, while
being better at avoiding potential “overfitting” effects. Furthermore,
after observing that our data-points approximately take a sigmoid
shape, we decided to also attempt to fit it with a regular sigmoid (lo-
gistic) curve, described in Equation 12. These models are shown in
the following equations, where Ghor

T (N)/Ghor
T (0) is the dependent

variable, N is the independent one (corresponding to levels of cloud
coverage). We estimated the actual values of the various Bi,j coeffi-
cients by employing least-squares fitting on accumulated irradiance
measurements, as we detail in the next section.

Ghor
T (N)/Ghor

T (0) = B1,0(N/8)
4 +B1,1(N/8)

3

+ B1,2(N/8)
2 +B1,3(N/8)

+ B1,4 (10)



Ghor
T (N)/Ghor

T (0) = B2,0(N/8)
3 +B2,1(N/8)

2

+ B2,2(N/8) +B2,3 (11)

Ghor
T (N)/Ghor

T (0) =
1

1 + e−B3,0(N/8+B3,1)
(12)

Development of an MLP network. In addition to evaluating the
predictive performance non-linear equations above, we also trained
a multilayer perceptron (MLP) neural network with one hidden
layer [5]. The network computes the Ghor

T (N) quantity given the
level of cloud coverage,N ; the estimatedGhor

T (0) quantity; the envi-
ronmental temperature Ta; and the relative humidity,RH .The use of
the Ta andRH parameters for network training was inspired by [20],
which suggests that temperature and relative humidity data can be
utilized to replace missing irradiance measurements in a dataset.

3.2 Estimating the final output of the PV system

The procedures presented in the previous section enable us to es-
timate the PV module’s (total) incident solar radiation Garb

T (N).
However, not all of this radiation is absorbed by the module.

First of all, absorption depends on the angle of incidence of so-
lar radiation, as the reflectance and transmittance of optical materials
changes along with it. As such, the optical input of a PV panel de-
pends on its orientation to the sun. Another factor affecting radiation
absorption concerns sediments of soil and dirt that are deposited on
a functioning PV on a daily basis.

These factors are considered in the estimation of the panel’s effec-
tive incident radiation, Geff. To estimate Geff, we follow the proce-
dures detailed in [11]. Also, given these factors’ relatively small vari-
ations across different modules, our implementation considers them
w.r.t. a typical monocrystalline silicon module. However, (corrective)
values for other module types can be incorporated into our model in
a straightforward manner.

A further factor to consider when estimating PV power output, is
the PV module’s operating temperature, as lower operating temper-
atures improve its ability to convert solar radiation into electricity.
The solar cell operating temperature Tc of a PV module depends on
the ambient temperature, as well as on the heat produced by the mod-
ule, and the heat lost to the environment. The heat exchange between
the module and its environment, in turn, depends on various factors,
such as module-specific attributes, and on the prevailing heat transfer
mechanisms (i.e conduction, convection and radiation).

A variety of conceptual and empirical estimation models have
been developed for the calculation of the PV module’s operating tem-
perature.For the needs of our work, we utilize the model of [21],
which ties Tc to the panel’s effective incident radiation, Geff, the
prevalling wind speed, V , and the ambient temperature Ta.

Taking such characteristics into account, a number of conceptual
and empirical estimation models have been developed for the calcu-
lation of a PV module’s maximum power output, Pm. Here, based
on a comparison of Predictive Models for Photovoltaic Module Per-
formance performed by the National Renewable Energy Laboratory
(NREL) [12], we adopt the PvForm model [14], which can account
for reductions in the PV module’s efficiency due to low irradiance
levels. However, in recent years manufacturers have begun to provide
measurements of such performance reductions. When such measure-
ments are available, our web-based tool automatically utilizes the
Improved PV model [12], which successfully incorporates them.

The module’s maximum power output, Pm, corresponds to the fi-
nal PV system’s power output, assuming the utilization of an opti-

mally regulated maximum power point tracker (MPPT),4 and negli-
gible wiring, inverter, or other losses. In order to account for such
losses, an empirical “efficiency” factor, k has been used so the effec-
tive power output, Peff is computed as Peff = kPm.5

4 Evaluation and Performance Guarantees
In this section, we first describe the process we used to build a
Mediterranean belt-specific dataset of weather observations for train-
ing and evaluating our models. Then, we describe how we used this
dataset to determine the coefficients of our proposed non-linear ap-
proximation equations for our area of interest, and train our neural
network. Following that, we evaluate all our five irradiance under
cloud coverage estimation models; and derive and report the final
power output prediction performance of our approach.

Building the observations dataset For the purpose of our re-
search, archival meteorological data was drawn from the Weather
Underground database for 9 regions in the Med-Belt6, and 1 region in
Northern Europe. Specifically, we drew data for sky condition (qual-
itative observations), solar radiation (i.e., Ghor

T (N) in W/m2), am-
bient temperature (◦C), and relative humidity (%). At least one year
worth of observation data during 2009-2012 was collected in each
city. The locations (and corresponding datasets) are seen in Table 2.

To build our final dataset, observations with solar radiation out of
bounds [0, 1.2Goncosθz] [15] were excluded. Furthermore, obser-
vations with unusually high or low temperature readings (given the
regional historical extremes); unusually high nightly radiation read-
ings; as well as unusually low (∼zero) midday radiation readings
were also excluded (as possible anomalies or “maintenance” inci-
dents). To derive homogeneous and equivalent datasets for the Med-
Belt regions, we reduced the larger datasets by progressively retain-
ing every second observation. Then, all Med-Belt sets were collated
and the resulting “global” observations dataset was divided in two
sets: a training and a testing set. These subsets were derived from the
global one through an iterative process of distributing its data-points
to each subset in an alternating fashion. The whole process ensured
there were no regularities present in the datasets. The training set
was used to estimate the Bi,j coefficient parameters above, as well
as to train the MLP network. The testing set was used to evaluate the
respective goodness-of-fit of all five approaches (in the MLP’s case,
where early stopping [5] is applied, half of the testing set was used
for validation and half for evaluation purposes, as we later explain).

Table 2. The final experimental dataset

Country Location Rangea

Spain
Gava, Barcelona 14275
Pantano de Cubillas, Albolote, Granada 15520
Patraix, Valencia 17498

Greece Chania, Crete 15252
Kato Pylea, Thessaloniki 13836

France Montauroux, Provence 17662
Orange,Provence Alpes Cote d’Azur 17600

Italy Mezzana Bigli, Lombardia 18642
Portugal Lordelo do Ouro, Porto 18612

Denmark Lake Arresoe, Ramloese, Helsinge 45087
a Number of valid observations after all quality control tests

4 An MPPT is a high efficiency electronic controller that varies a PV module’s
electrical operating point in order to maximize power output.

5 The value of k is user-provided, and should correspond to the inverter effi-
ciency factor, if an inverter is used—adjusted to best fit the system.

6 In the case of Chania, Greece the respective archival meteorological data
have been provided by the National Observatory of Athens.



Least-squares fitting of the non-linear curves In order to fit
our proposed non-linear curves to our dataset above, we used
the following procedure. First, given that each qualitative sky
condition value usually corresponds to more than one “eighths”
(e.g. FEW corresponds to 1/8 − 2/8, SCT to 3/8 − 4/8, and
so on), we derived a “midpoint” unique corresponding quanti-
tative value to characterize each cloud coverage level. That is,
we characterize {CLR,FEW,SCT,BKN,OV C} by the fol-
lowing respective values for N : {0, 1.5, 3.5, 6, 8}. We then used
our training set to compute the sample mean of the corresponding
Ghor

T (N)/Ghor
T (0) for each of those values of N . The resulting

〈N,Ghor
T (N)/Ghor

T (0)〉 pairs then define five points on the Cartes-
sian plane which where used to estimate the vector of Bi,j coeffi-
cients of our least square fitting models. The derivedBi,j coefficients
are the following. For Eq. 9, B0,0 = −0.6287, B0,1 = 1.1653
and B0,2 = 0.034; for Eq. 10, B1,0 = 1.63, B1,1 = −3.047,
B1,2 = 1.531, B1,3 = −0.7411 and B1,4 = 1.037 ; for Eq. 11,
B2,0 = 0.198, B2,1 = −0.4371, B2,2 = −0.3865 and B2,3 =
1.033; and for Eq. 12, B3,0 = −3.6772 and B3,1 = −0.8665.

Training the MLP network To train our neural network the test-
ing set was divided into two equal parts, the validation set and a new
testing set (by adding to each the data-points of the original testing
set in an alternating fashion). The neural networks architecture com-
prises one hidden layer with five input and one output nodes. After
five experimental iterations of training the network with 3,4,5,7,8,14,
and 26 hidden layer neurons, the MLP comprising of 4 nodes in
the hidden layer was found to present the best network architec-
ture. Normalized values in the range of [−1, 1] for the quantities
Ta, RH,G

hor
B (0), Ghor

D (0), N constituted the networks five input
nodes. Sigmoid activation functions were used for the hidden layer
neurons, while linear functions were used for the output node. The
MLP training used the back propagation learning algorithm with the
batch method and uniform learning. Overfitting is avoided via the
early stoping neural network training technique [5].

Evaluating the CRM (cloud-cover radiation) models For the
evaluation of our five CRM approaches, we calculated their Mean
Absolute Percentage Error:MAPE = 1

n

∑n
i=1

∣∣∣Fi−Ai
Ai

∣∣∣ 100; Mean

Absolute Error: MAE = 1
n

∑n
i=1 |Fi − Ai|; and relative Mean

Absolute Error: rMAE = MAE
1/n

∑n
i=1 Ai

100. Here, Ai represents

a data-point coming from the actual (historical data) Ghor
T (N) 6=

0 quantities, and Fi represents the corresponding forecasted (esti-
mated) one, with i ranging from 1 to n within the dataset. Note
that, for near-zero Ai values, the corresponding absolute percent-
age error (APE) will approach infinity, even if the error is small.
For this reason, we excluded all the value-pairs of ( Ai , Fi) with
Ai/max{Ai}ni=1 < 0.1 from the MAPE calculation, as is standard
practice [22]. All CRM methods were evaluated on the appropriate
testing sets described earlier, and on the dataset collected from Lake
Arresoe in Denmark to test their behaviour outside the region of in-
terest. The evaluation results for the four least square-fitted curves
are reported in Table 3.

We ran a standard one-way ANOVA test on these methods, which
showed that their APE errors are different in a statistical significant
manner. However, follow-up paired T-tests showed there is no sta-
tistical significance (with 95% confidence) among the 4th & 3rd de-
gree polynomials and the Kasten & Czeplak’s Med-Belt formulation
methods, while there is statistical significance between the error of
each one of those methods and the error of the sigmoid function (i.e.,
the sigmoid is significantly worse than the others—cf. Table 3).

Table 3. Evaluation of the fitted non-linear curves.

Mediterranean Denmark
Equation MAPE rMAE MAE MAPE rMAE MAE
K&C-Med 23.727 21.441 75.904 34.538 37.051 98.938
4th-degr.Pol. 23.825 21.585 76.414 34.611 37.109 99.091
3rd-degr.Pol. 23.692 21.396 75.744 34.554 37.059 98.958
Sigmoid 25.0 22.688 80.319 35.882 38.238 102.108

“K&C-Med” is Eq. 9. MAPE & rMAE in %, MAE in W/M2.

Our results show that the MLP network is a clear winner when
compared with the four other CRM models. Specifically, its MAPE,
rMAE and MAE were 22.946%, 19.456% and 68.69W/M2 respec-
tively for the Med-Belt, and subsequent paired T-tests confirmed its
error is indeed lower in a statistical significant manner. Moreover,
we trained it and tested it separately on datasets for all our 9 spe-
cific locations, and observed that its performance was significantly
enhanced; for all of the cities, MAPE, rMAE, and MAE dropped to
the levels of (approximately) 16%, 15%, and 45W/M2, respectively.

However, the MLP network’s performance deteriorates consid-
erably outside the Med-Belt, as it is trained on Med-Belt data;
specifically, for Arresoe, MAPE=46.171%, rMAE=39.762% and
MAE=106.149W/M2. Thus, RENES incorporates the MLP net-
work as its CRM model inside the Med-Belt, but uses the 3rd degree
polynomial outside the Med-Belt (due to its slightly better perfor-
mance there when compared to the other methods).

Final power output prediction performance guarantees For the
evaluation of our tool, we employ an error propagation methodol-
ogy [1], in order to accumulate each individual sub-model’s error
and calculate the total error. The MAE and rMAE were calculated for
PV modules of two different manufacturing technologies (i.e. multi-
crystal and single-crystal Si) and four mounting configurations (i.e.
stand-alone, flat roof, sloped roof and building-integrated). The PV
modules were considered to be installed with either a 0◦ or a 45◦ tilt
angle (in the latter case, south-facing). For each combination of PV
module manufacturing technology, mounting type and tilt angle con-
figurations, the error at the output of each sub-model was calculated.
Then, that error was propagated through the “chain” of sub-models,
being recursively added to the subsequent model’s error, to estimate
the overall error for each data point contained in our dataset. Finally,
the MAE and rMAE of the method were estimated.

The derived overall method’s power output prediction errors for
horizontal orientation appear in Table 4.

Table 4. Overall Output Prediction Error on Horizontal orientation

Multi-crystal Si Single-crystal Si
Nominal Pm : 35.16W Nominal Pm : 74.34W

Mounting Type MAE (W) rMAE (%) MAE (W) rMAE (%)
Stand-Alone 2.527 22.494 5.451 21.891
Flat Roof 2.504 22.603 5.404 21.989
Sloped Roof 2.445 22.967 5.269 22.319
Building-Integrated 2.391 23.397 5.143 22.724

Due to a lack of required data with respect to irradiance measure-
ments at non-zero slope angles within the Med-Belt, we were only
able to estimate a worst-case approximate bound for the inclined
orientation above (i.e., a typical south-facing, 45◦ slope angle), of
around 40% relative mean absolute error (for all mounting types
above). We defer the details to an extended version of this paper.

In terms of comparing our method’s performance with related
work, we note that most existing power output prediction work (e.g.,



using trained neural networks) refers to specific narrow geographical
areas, as explained earlier. To the best of our knowledge, the only
generic prediction methodology that has been applied in a wide area
is that of [2, 10]—but their PV output prediction performance re-
sults are incomparable to ours, since they lie outside the Med-Belt.
However, their method’s error relies heavily on irradiance forecasting
(which is also the main factor affecting our method’s performance).
This enables us to compare our irradiance forecasting error to theirs,
as found in a paper reporting an application of their method in South-
ern Spain [9]: their results for that region have a relative MAE of ap-
proximately 12.5%. This is better than our MLP’s rMAE of 19.456%
(over the whole Med-Belt); however, as noted earlier, their method-
ology relies on global numerical weather predictions (NWP) pro-
vided by meteorological organizations, while ours is an inexpensive
methodology based on free-for-all online weather data.7

5 A Web-Based DER Output Estimation Tool

We incorporated our PV power output estimation model in a web-
based, graphical, user-interactive, renewable energy estimation tool,
RENES witch can be found at http://www.intelligence.tuc.gr/renes.
The tool currently provides accurate estimates (within the aforemen-
tioned error guarantees for PV output estimates) for the Med-Belt. Its
operation is based on weather predictions from online weather web-
sites (such as Weather Underground), and specifications for renew-
able generators for any location on a user-clickable map of Europe.
Most essential parameters, such as longitude/latitude, or typical PV
systems parameters, are automatically populated with values, but can
also be filled in by the user. We note that RENES allows for the easy
incorporation and extension of all the models discussed above, and
different ones. It also provides a web-based application program in-
terface (API), enabling the service of direct http request messages.
Finally, part of the tool’s functionality is predicting the power output
of wind turbines at specified locations. Wind-based generation pre-
diction employs a standard method, estimating production based on
the so-called power curve of each turbine, which determines its out-
put based on forecasted wind speeds (see, e.g., [3] for more details).

6 Conclusions and Future Work

In this paper, we presented a generic, low cost PV output estimation
method, based on weather readings from online websites, and evalu-
ated it with real data over the Mediterranean region. We incorporated
this method in a web-based tool that enables the user of predicting the
output of distributed energy renewable (solar and wind) energy gen-
erators. Our tool, RENES, can be of use to the research community
for experiments and simulations (as it can be a convenient platform
for “scrapping” online weather data). Moreover, it can be potentially
of value to VPPs and the energy industry, or the wider public. To this
end, impending work includes user-evaluating RENES and enhanc-
ing it with more capabilities.

Regarding future work, we plan to evaluate alternative algorithms
for inclusion in our generic prediction method. Further, we aim to
utilize our tool to gather data for Smart Grid and energy-related re-
search, such as designing economic mechanisms related to VPP oper-
ation, or using machine learning techniques for optimal sun-tracking.
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